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1.  INTRODUCTION 

The report is divided into two principal parts, the first consisting of the application of direct 
numerical simulation (DNS) to the study of the impedance of slit resonators constructed with slit 
orifices at high temperature and the computational investigation of their acoustic performance 
exposed to discrete and broadband sound. 

The second consists of the development of a uniform grazing flow 1-dof impedance model of 
series coupled Helmholtz resonators constructed with multi-circular orifices and the 
development of a non-grazing flow, high amplitude, 2-dof impedance model of resonators 
constructed with multi-slit orifices. 
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2.  COMPUTATIONAL INVESTIGATION OF THE EFFECT OF HiGH TEMPERATURE ON 
RESONATOR IMPEDANCE 

In our computational study of resonator impedance, the impedance of a resonator at standard 
temperature (150 C) and a temperature representative of that of the primary jet of commercial jet 
engines (6000 K) were investigated.  For this study, the resonators were mounted at the end of a 
normal incidence impedance tube as shown in Fig. 2.1 and Fig. 2.2.  

                                         

 

 Figure 2.1.  A slit resonator   Figure 2.2.  A resonator with a rectangular 

                  in an impedance tube.                             opening in an impedance tube. 

 

Fig. 2.1 shows a slit resonator.  Fig. 2.2 shows a resonator with a rectangular opening in a 
normal incidence impedance tube. In our investigation, both discrete frequency and broadband 
incident sound are used in the simulation.  

A significant rise in gas temperature would affect many of the properties of a gas, e. g. density, 
ratio of specific heats, speed of sound and viscosity.  It is not straightforward to see how it might 
impact on the impedance of a liner.  To characterize temperature effect, it is necessary to 
decide on a basis for comparison.  For this purpose, it will be assumed that the source of sound 
is from another part of the system unaffected by the temperature change.  In other words, the 
sound intensity and frequencies are the same.  However, because the speed of sound 
increases with temperature, the depth mode resonance frequency of a resonator will increase.  
Thus to evaluate high temperature effect, the resonator depth has to be increased to keep the 
resonance frequency of the resonator the same.  Figures 2.3 and Fig. 2.4 show the geometry of 
a slit resonator with the same resonance frequency used in the present study.  One operates at 
150 C and the other at 6000 K. 
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       Fig. 2.3.  150 C resonator.             Fig. 2.4.  6000 K resonator. 

 

 

Incident Sound at Discrete Frequency 

A series of numerical simulations at an incident sound wave frequency of 2 kHz were carried 
out.  The incident sound-pressure-level (SPL) ranges from 115 dB to 145 dB.  This spans the 
low SPL range, when the liner dissipation is through viscous damping at the resonator opening, 
to the high SPL range, when vortex shedding is the dominant dissipation mechanism.  Figure 
2.5 shows the measured resistance from the simulation data.  Figure 2.6 shows the measured 
reactance. The results are presented in a normalized form (scaled to the value of ρa at the 

operating temperature) and in absolute level in Rayl. 
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             Figure 2.5. Resistance at 2 kHz.  � 6000 K; � 150 C. 

 

 

Figure 2.7. shows the corresponding absorption coefficient. At a fixed frequency, the resistance 
remains unchanged at low SPL.  Around SPL = 130 dB, the resistance starts to increase with 
SPL.  This marks the beginning of the nonlinear behavior of the resonator impedance.  As SPL 
continues to increase, vortex shedding begins.  This is accompanied by a steeper increase in 
resistance.  On the other hand, the reactance tends to remain relatively constant.  A small 
decrease occurs at even higher SPL.  This behavior applies to resonator at low as well as at 
high temperature.  The absorption coefficient generally follows the trend of the resistance.  

On comparing the resistance and reactance at 150 C and at 6000 K, it is clear that there are 
large differences when expressed in Rayl.  In other words, temperature has a significant impact 
on the absolute value of the impedance of a resonator.  However, when expressed in 
normalized form, the differences are much smaller.  Since the normalized impedance is more 
relevant to the performance of a resonator, temperature effect is not exceedingly large.  A better 
gauge of temperature effect, perhaps, is to use the absorption coefficient which is non-
dimensional and is, therefore, independent of normalization. 
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  Figure 2.6.  Reactance at 2 kHz. � 6000 K; � 150 C. 

           

 Figure 2.7.  Absorption Coefficient at 2 kHz. � 6000 K; � 150 C. 
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Incident Sound at Quarter-Wave Resonance Frequency 

A resonator would respond with large amplitude acoustic oscillations when excited at quarter-
wave resonance frequency.  It is, therefore, interesting to observe the effect of temperature on 
the resonator impedance at such resonance frequencies.  In the present study, the test 
frequencies are chosen to be at 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kHz.  At each selected frequency, 
the depth of the resonator is adjusted to be exactly at ¼ wave length deep for the particular 
operating temperature.  The measured resistance, reactance and absorption coefficients are 
shown in Figures 8, 9 and 10.  The incident sound SPL at 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kHz are 
respectively 151.6, 152.8, 151.9, 145.4 142.6 and 141.6 dB. 

 

 

 

 

  

    Figure 2.8.  Resistance, normalized and in absolute unit, at quarter-wave resonance. 

               � 6000 K; � 150 C. 
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For the resistance in normalized form, the effect of temperature is minimal. The absolute values 
are, however, quite different at low frequencies.  The effect of temperature on reactance at 
quarter-wave resonances is quite different.  It is higher at low temperature, regardless whether it 
is in normalized or in absolute value. The difference increases with frequency.  The absorption 
coefficient, as in the non-resonance cases, is nearly independent of temperature. 

 

          

           

      Figure 2.9. Reactance, normalized and in absolute unit, at quarter-wave resonance. 

             � 6000 K; � 150 C. 
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   Figure 2.10. Absorption coefficients at quarter-wave resonance. 

          � 6000 K; � 150 C. 

 

 

 

Broadband Incident Sound 

 

The acoustic behavior of a resonator under broadband sound excitation is usually different from 
that under discrete incident sound waves.  We performed a series of 3 dimensional simulations 
with broadband incident sound.  The simulations use the same normal incidence impedance 
tube as in AIAA Paper 2009-3171.  The impedance tube at 150 C is shown in Fig. 2.11.  The 
depth of the resonator at 6000 K is adjusted so as to have the same depth mode resonance 
frequency. The size of the rectangular opening is 0.05” by 0.0625”.  That is, the aspect ratio is 
1.25. 

Two direct numerical simulations have been carried out.  One has an incident OASPL = 141 dB, the 
other has an OASPL of 150 dB.  The incident sound spectra are shown in Fig. 2.12 and Fig. 2.17. They 
are the same as those in AIAA Paper 2009-3171.  Fig. 2.12 shows the incident broadband noise 
spectrum at 141 OASPL (dotted line) measured experimentally.  The spectrum covers the range of 500 
Hz to 3000 Hz. In the numerical simulation, the spectrum is divided into 118 bands.  The circles in Fig. 
2.12 are the center frequencies of the bands.  As can be seen the discretized spectrum (full line) is a 
very close approximation of that of the experiment. 
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 Figure 2.11. Normal incidence impedance tube used for numerical simulation with 
broadband incident sound waves. 

 

 

 

                 

       Figure 2.12. Incident sound spectrum with an OASPL of 141 dB. 
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Fig. 2.13. Resistance in normalized form. Solid line 6000 K, dotted line 150 C. SPL=141 dB. 

 

 

 

                          

     Figure 2.14. Resistance in Rayl. Solid line 6000 K, dotted line 150 C. SPL=141 dB. 
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Figure 2.15. Reactance in normalized form. Solid line 6000 K, dotted line 150 C. SPL=141 dB. 
 
 
 
 

                        

    Figure 2.16. Reactance in Rayl. Solid line 6000 K, dotted line 150 C. SPL=141 dB. 
 
 
 
The above figures are the computed results at OASPL 140 dB. Collectively, they show that in 
the normalized form the impedance of a resonator is almost independent of temperature.  When 
plotted in absolute unit, the impedance at 150 C is consistently higher (more negative if X is 
negative).  The absorption coefficient, on the other hand, behaves somewhat differently.  It is 
independent of temperature at low frequency.  But at high frequencies there is more absorption 
at low temperature. 
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Figure 2.17. Absorption Coefficient. Solid line 6000 K, dotted line 150 C. SPL=141 dB. 

 

 

Figures 2.18 to 2.22 show similar results but at a much higher level of incident OASPL i.e. 150 
dB.  The trend involving temperature is, however, nearly the same as that at lower incident SPL.  
This indicates that the general trend is pretty much SPL independent.  Since at 141 dB the 
resonator behaves linearly while at 150 dB the resonator behaves nonlinearly, the trend is most 
probably true for all levels of SPL. 

   

      Figure 2.18. Incident sound spectrum at an OASPL of 150 dB. 
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Fig. 2.19. Resistance in normalized form. Solid line 6000 K, dotted line 150 C. SPL=150 dB. 

 

 

 

                         

   Fig. 2.20. Resistance in Rayl. Solid line 6000 K, dotted line 150 C., SPL=150 dB. 
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Fig. 2.21. Normalized Reactance. Solid line 6000 K, dotted line 150C. SPL=150 dB. 

 

 

 

                       

     Figure 22. Reactance in Rayl. Solid line 6000 K, dotted line 150 C. SPL=150 dB. 
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Figure 23. Absorption Coefficient. Solid line 6000 K, dotted line 150 C. SPL=150 dB. 

 

 

B. Computational investigation of the impedance of an acoustic liner. 

 

In our Phase I study of the impedance of a liner, an array of 10 resonators is chosen as a 
representative liner.  This size array is adopted just for the purpose of demonstrating feasibility.  
Also a long array would require a much longer computing time.  This would prevent us from 
doing a more detailed parametric study to illustrate the difference between the impedance of a 
liner and that of a single resonator.  The difference is, of course, the result of mutual interaction 
among the resonators that form the liner.  In our study, the liner sample is again placed at the 
end of a normal incidence impedance tube as shown in Fig. 2.24.  Discrete incident sound at a 
range of SPL is used in the study. The computation is preformed at 150 C and at 6000 K. 
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   Figure 2.24. An acoustic liner sample consisting of 10 resonators housed in a normal 

    incidence impedance tube.  Each resonator is the same as that in Fig. 3 & Fig. 4. 

 

 

Because 10 resonators are used in the liner sample, the width of the impedance tube is 10 
times wider than that for a single resonator.  This larger width allows the propagation of high 
order duct modes in the impedance tube.  In contrast, the narrower impedance tube for a single 
resonator would only allow the propagation of the plane wave mode for frequencies up to 6 kHz.  
In our Phase I study, the first three propagating modes (n = 0, 1, 2 ; n = mode number) are used 
as incident wave.  The n = 1 and 2 modes may be regarded as representing conditions under 
which the incident sound pressure on the liner is not uniform.  This is typical of what a liner 
would encounter in a jet engine inlet duct in the presence of upstream propagating spinning duct 
modes. 
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      Figure 2.25. Instantaneous pressure contours inside the impedance tube. n=0 mode. 

 

Figure 2.25. shows the instantaneous pressure contours inside the normal incidence impedance 
tube with incident sound in the n = 0 mode at 2 kHz, 152 dB SPL and 150 C.  The energy flux 
(PWL) based on Morfey’s formula of all the propagating modes are calculated from the 
simulation data.  The table adjacent to the figure lists the magnitude in dB. PWL(-) are the 
incident modes.  PWL(+) are the reflected modes.  It is clear from the table, the sound field is 
dominated by the n = 0 mode, the mode of the incident wave. 
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   Figure 2.26. Instantaneous pressure contours inside the impedance tube. n=1 mode. 

                       

  Figure 27. Instantaneous pressure contours inside the impedance tube. n=2 mode. 

 

Fig. 2.26 and Fig. 2.27 show the results of similar computation for the n = 1 and 2 incident 
modes.  The instantaneous pressure contours show the standing sound wave pattern inside the 
impedance tube.  However, inside the liner, because the internal partitions prevent lateral fluid 
motion, the pattern is slightly different.  Still the computed PWL values indicate that waves with 
the same mode number as the incident wave dominate the sound field. 
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Figure 2.28. Instantaneous pressure contours inside the impedance tube. n=0 mode. 

 

                       

Figure 2.29. Instantaneous pressure contours inside the impedance tube. n=1 mode. 

 



20 

 

                    

Figure 2.30. Instantaneous pressure contours inside the impedance tube. n=2 mode. 

 

 

Figs. 2.28, 2.29 and 2.30 are computations similar to those of Figs. 2.25 to 2.27 but at a 
frequency of 1.5 kHz.  They provide further confirmation of the observation that waves with the 
same mode number as the incident wave dominate the sound field inside the impedance tube. 

The observation that essentially only waves of one wave mode number form the standing wave 
pattern inside the impedance tube allows the use of the two-microphone method to measure 
and compute the liner impedance.  In this way, we determine the acoustic impedance of a liner 
under non-uniform incident sound.  It is to be noted that if this impedance is not the same as 
that of a single resonator then it is a strong indication that there is mutual acoustic interaction 
between neighboring resonators of a liner. 
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   Fig. 2.31. Resistance of liner at 2 kHz.  single resonator. �,  �, �, mode 0, 1, 2. 

 

                    

   Fig. 2.32. Reactance of liner at 2 kHz.  single resonator. �,  �, �, mode 0, 1, 2. 



22 

 

                  

   Fig. 2.33. Absorption Coeff. at 2 kHz.  single resonator. �,  �, �, mode 0, 1, 2. 

 

Figs. 2.31, 2.32 and 2.33 show the resistance, reactance and absorption coefficient of the liner 
at 2 kHz frequency when the incident waves have mode number 0, 1, and 2.  Shown also are 
the corresponding results of a single resonator.  These results suggest that as SPL increases, 
the impedance and absorption coefficient of a liner under high order mode incident waves 
deviate increasingly from those of a single resonator.  Fig. 34, 35 and 36 show similar liner 
acoustic behavior at an incident sound wave frequency of 1.5 kHz.  At this time, we are unaware 
that the effect of non-uniform SPL on the impedance of a liner has been investigated before.  
The present result is believed to be new. This study is, however, only preliminary.  Further work 
is needed to determine its significance. 

                   

     Fig. 2.34. Resistance of liner at 1.5 kHz.  single resonator. �,  �, �, mode 0, 1, 2. 
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    Fig. 2.35. Reactance of liner at 1.5 kHz.  single resonator. �,  �, �, mode 0, 1, 2. 

 

              

Fig. 2.36. Absorp Coeff. of a liner at 1.5 kHz.  single resonator. �,  �, �, mode 0, 1, 2. 
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3.  GRAZING FLOW IMPEDANCE MODEL FOR SERIES COUPLED HELMHOLTZ 
RESONATORS 

An axial (1-DOF) control volume model was developed to predict the impedance of series 
coupled Helmholtz resonators constructed with circular orifices exposed to high amplitude 
sound and uniform grazing flow.  The model addresses only the effects of resonator geometry, 
incident sound pressure amplitude and uniform grazing flow.  It does not include the effects of 
grazing flow boundary-layer thickness.  Non-linear modeling is restricted to the front cavity.  
Predicted impedances show good agreement with NASA furnished data over a wide range of 
grazing flow speeds, sound pressure amplitudes and frequencies.   

Model Derivation 

The derivation of the impedance prediction model is based on applying conservation of 
unsteady mass and vertical momentum across the control volume sketched in Figure 3.1.  The 
quantities “1” and “2” denote the front and rear cavities, respectively.  During the in-flow half-
cycle, the acoustic volume flow entering the front cavity orifice upper control surface is denoted 
by uoS1.  The quantity uvcSvc represents the sound particle volume flow exiting the front cavity 
control volume lower surface, where Svc represents the so-called "vena contracta" area.  The 
volume flow VSV represents the grazing volume flow deflected into the front control volume by 

the driving sound pressure field Po.  The quantities H1/H2, τ1/τ2 and L1/L2 represent the front/rear 

orifice inertial lengths, faceplate thicknesses and cavity depths respectively.  Finally, τw1 and τw2 
represent the viscous resistive losses on the front/rear faceplate thickness wetted areas, 
respectively. 

The in-flow model is valid only during the half-cycle when the incident acoustic velocity is 
pumped into the resonator cavity - it is not valid during the other half-cycle when the acoustic 
velocity is ejected from the resonator cavity.  This restriction is not unduly limiting because the 
particle volume flow pumped into and out-of the resonator volume must be constant over a 
dynamically steady-state sound period.  Thus an approximate solution over the in-flow half-cycle 
should result in an approximate solution over the entire cycle.  
 
Conservation of Mass 

Assuming H >> λ, Tempkin has shown that to lowest order, compressibility effects are small 
with respect to mass flow convection1.  With this simplification, the conservation of mass flux 
across the upper cavity control volume may be written, where uo, uinv and uBL are understood to 
be functions of time, as 

v o 1 vc vc 1 1VS +u S =u S =u S      (3.1) 

Here u1S1 represents the acoustic volume flow entering the front cavity referenced to the front 
orifice area S1.  Equation (3.1) shows that, to the lowest order, the pumping of volume flow into 
and out-of the front resonator orifice is governed by unsteady, incompressible motion.  This 
makes sense because significant acoustic changes can occur only over scale lengths on the 
order of an acoustic wavelength.   
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Figure 3.1.  Control Volume Used in Derivation of 2-DOF Impedance Model 
 
 

Front Cavity Conservation of Vertical Momentum 

The conservation of momentum in the vertical direction across the front control volume is 
expressed as, 

( ) [ ]2 21
1 1 1 1 1 1 1 1

- ( ) -
o o o vc vc o w w

du
S H u S u S P P L S S

dt
ρ ρ τ= − +   (3.2) 

The various terms in (3.2) are described below:  

• The first term on the left-hand-side (LHS) represents the rate of increase of momentum 
stored in the front cavity control volume.  The inertial length parameter H1 is unknown and 
must be determined experimentally. 

• The first term on the right-hand-side (RHS) represents the net nonlinear increase in 
momentum flux across the front cavity upper and lower control surfaces. 

• The second term on the RHS represents the net vertical acoustic driving force acting on 
the control volume.  Here P0 represents the acoustic pressure driving the sound particle 
volume flow into the cavity during the inflow half-cycle and P1(L1) represents the cavity 
restoring pressure at the orifice.  Hot-wire experiments conducted by Ingard and Ising 
showed that orifice near-field effects extend to about two or more orifice diameters2  
Thus Po, as defined in Figure 3.1, may not accurately represent the acoustic driving 
pressure during the inflow half-cycle.  Possible errors in Po will be corrected empirically 
using the discharge coefficient concept defined below. 

• The third term on the RHS represents the momentum loss from frictional wall shear stresses 

τW1 distributed over the face-plate thickness wetted area SW1 = πd1τ.. 
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Discharge/Grazing Flow Coefficients.  Equation (3.2) is simplified by introducing an acoustic 
discharge coefficient Cd and a grazing flow coefficient CV defined as, 

0 0

;vc v
d v

S S
C C

S S
≡ ≡       (3.3) 

The discharge coefficient Cd governs the average sound particle volume flow rate entering the 
inner resonator cavity.  It is the acoustic equivalent to the discharge coefficient concept used in 
steady-state pipe flow3,4.  The grazing flow coefficient CV governs the steady-state grazing 
volume flow rate deflected into the inner resonator orifice.   

Substituting (3.1) and (3.3) into (3.2) results in the following simplification, 

21
1 1 1 1 1 1 1 1 1

1
2 ( )d

o o V o w w

d

Cdu
S H S u C Vu S P P S

dt C
ρ ρ τ

  −
+ + = − −  

  
  (3.4) 

In deriving (3.4), steady-state terms associated with the deflection of the grazing flow into the 
cavity were ignored and only acoustic terms retained.  It is intuitively clear that at low values of 
SPL, resonator non-linear resistive losses become negligibly small.  Under these conditions, the 
non-linear term (1-Cd) should also become negligibly small. 

The non-linearity of (3.4) prevents an analytic solution.  It must be solved numerically to achieve 
a dynamically steady-state solution, followed by a Fourier transform to calculate the 
fundamental harmonic velocity component.  Although this procedure is numerically 
straightforward, it greatly complicates the design of sound absorbing liners.  Equation (3.4) can 
be linearized by incorporating the experimental findings of Ingard and Ising, who used hot-wires 
to measure the amplitudes of higher harmonic velocity components2.  Their measurements 
showed, at high SPLs, that alternating non-linear jetting into and out-of an orifice takes place 
during each half-cycle.  Further, the higher component velocity components were small 
compared to the fundamental.  Physically, this permits the replacement of the nonlinear term u2 
in (3.4) with the approximate expression, 

( )2 2

1 1 1 1 ei tu u u t u ω≅ ≅     (3.5) 

Rear Cavity Conservation of Vertical Momentum.   

The conservation of momentum in the vertical direction across the rear control volume is 
expressed as, 

2
2 2 1 2 2 2 2

( )
o w w

du
S H P P S S

dt
ρ τ= − −     (3.6) 

Implicit in the derivation of (3.6) is the assumption that nonlinear acoustic jetting is suppressed 

in the rear cavity.  This assumption is discussed later. 

Front/Rear Cavity Pressures.   

The derivation of the rear cavity pressure P2 assumes that the cavity-area averaged acoustic 

volume flow u2σ2Sc enters the cavity, where Sc represents the cavity cross-sectional area and σ2 

= S2/Sc.  It is also assumed that the cavity pressure can be accurately modeled by solving the 

one-dimensional wave equation.  The following expression is derived, where k = ω/c0, 

( )2 0 0 2 2 2cotP i c kL uρ σ= −      (3.7) 
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The derivation of the front cavity pressure P1 assumes that the acoustic volume flow u2σ2Sc 

exits the front cavity at x = 0 and that the acoustic volume flow u1σ1Sc enters the front cavity at x 
= L1.  Application of the one-dimensional wave equation yields the following solution, 

( )
( )

0 0 2
1 0 0 1 1 1 2

1

cot
sin

c
P i c kL u i u

kL

ρ σ
ρ σ= − +    (3.8) 

Front/Rear Viscous Scrubbing Losses 

The front/rear wall shear stresses τw1 and τw2 are assumed to be generated by steady-state and 
unsteady viscous scrubbing losses.  A simple model, based upon dimensional analysis, is 
proposed.  Consider the front orifice.  Steady-state shear stresses are assumed to be 

proportional to µοu1/δav where δav is an orifice faceplate thickness averaged boundary-layer 

thickness.  Because δav is unknown, it is assumed to be proportional to the orifice diameter so 

that front/rear steady-state shear stresses are proportional to µou1/d1 and µοu2/d2 respectively.  
Front/rear acoustic shear stresses are derived assuming "Stokes-like" axially uniform diffusion 

of vorticity over the orifice thickness, so that they are proportional to µοu1(ω/νο)1/2 and 

µοu2(ω/νο)
1/2, respectively.  With these assumptions, the front wall shear stress τw1 is written, 

2

1
1 1 1 1

0 1

o
w ss ac

d
K K u

d

µω
τ

ν

 
 = +
 
 

     (3.9) 

where Kss1 and Kac1 are viscous parameters experimentally determined by Hersh, Walker and 
Celano to be5, 

1.44 1

1 1
1 1

1 1

13 10.23 ; 3 2.32w w
ss acK K

d d

τ τ
− −

   
= + = +   

   
  (3.10) 

The corresponding rear wall shear stress τw2 is written 

2

2
2 2 2 2

0 2

o
w ss ac

d
K K u

d

µω
τ

ν

 
= + 

 
 

    (3.11) 

Substituting (3.7-3.11) into (3.5-3.6) and dividing by ρ0c0 yields, 

( )
( )2 0 21

1 1 1 2 1 0 1 1 1

1

1
2 cot

sin
oD

o V

D o

c Pdu C
H S u i u C V ic kL u

dt C kL

σ
ρ σ

ρ
 −

 + + + + Γ − =   
 

 (3.12) 

and  

( )
( )

( )0 2 2
2 0 2 2 2 2 2 2 0 1 2 1 1

1

cot cot 0
sin

c du
ic kL P S i u H ic S kL u

kL dt

σ
σ σ

 
Γ − − + + = 

 
  (3.13) 

Here Γ1 and Γ2 are introduced to simplify notation, 

2

11
1 1 1 2

0 1

4 o
ss ac

d
K K

d

ν τω
ν

 
Γ ≡ + 

 
 

     (3.14) 

2

22
2 2 2 2

0 2

4 o
ss ac

d
K K

d

ν τω
ν

 
Γ ≡ + 

 
 

    (3.15) 
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With this understanding, substituting (3.14) and (3.15) into (3.12) and (3.13) yields 

( ){ }

( )

1 1 0 1 1 1

2 0 2
1 2

1

2 cot

1

sin

V

D D

D o

C V i H c kL u

cC P
u i u

C kL

ω σ

σ
ρ

 + Γ + − 

 −
+ + = 

 

   (3.16) 

( )
( )

( )0 2
2 2 0 2 2 2 0 1 1 1

1

cot cot 0
sin

c
i H c kL u ic kL u

kL

σ
ω σ σ

   Γ − − − + =  
   

  (3.17) 

Substituting (3.17) for u2 into (3.16) yields the following expression for u1,  

( )
( )

2

1 2 12

1 1 1

1 2 0 2

cot1

sin
D D

V

D o

c kLC P
u r z u

C kL z ic

σ σ
σ ρ

   −  + + + =    −     
   (3.18) 

Here the quantities rV, z1 and z2 are defined as 

( )
( )

1 1 1 0 1 1

2 2 2 0 2 2

2 ; cot ;

cot

V V
r C V z i H c kL

z i H c kL

ω σ

ω σ

 ≡ ≡ Γ + − 

 ≡ Γ + − 
    (3.19) 

With u1 defined by (3.18), after some algebra, the following expression is derived for the 
impedance of a series-coupled 2-DOF resonator,  
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(3.20) 

The terms Rrad, RV, Z1 and Z2 in (3.20) are defined below as, 

( )
( )

( )

( )

1 12

2

1 0 1 0 1 10 0 1

1 1
1 1 1 1 1

1 0 0 1

2 2
2 2 2 2 2

1 0 0 2

1 1
; ; 1 2

cot

cot

D D V V
NL V rad

D

corr

corr

J kdC P r C V
R R R

C c c kdc

H
z R iX R i kL

c c

H
z R iX R i kL

c c

σ σ σρ σ

ω
σ σ

ω
σ σ

  −
= = = = −   

   

 Γ
= + = + − 

 

 Γ
= + = + − 

 

 (3.21) 

In (3.21), the coefficient CV includes the factor 2 and the coefficients Kss and Kac include the 
factor 4 shown in (3.14) and (3.15).   

Model Validation 

The predicted impedance was compared to data furnished by NASA LaRC.  Table 3.1 below 
summarizes the 2-dof resonator configurations.  Figure 3.2 summarizes the measured vs. 
predicted non-grazing flow dimensional resistances of Configurations # 1-8 at SPL = 140 dB.  
The model parameters were selected to force agreement with data.   
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Table 3.I.  Summary of NASA Furnished 2-DOF GEAT0 Resonator Configurations 

Config

Hole 

Pattern

Hole 

Diamter 

(in)

Sheet 

Thickness 

(in)

Cavity 

Depth 

(in)

Hole 

Pattern

Hole 

Diamter 

(in)

Sheet 

Thickness 

(in)

Cavity 

Depth 

(in)

1 4x4 0.12250 0.0625 0.46 4x4 0.12250 0.0625 0.81

2 4x4 0.12250 0.0625 0.46 4x4 0.12250 0.0125 0.81

3 4x4 0.12250 0.0625 0.46 4x4 0.12250 0.2500 0.81

4 4x4 0.12250 0.0625 0.46 4x4 0.12250 0.3750 0.81

5 16x16 0.03125 0.0625 0.46 16x16 0.03125 0.0625 0.81

6 16x16 0.03125 0.0625 0.46 16x16 0.03125 0.0125 0.81

7 16x16 0.03125 0.0625 0.46 16x16 0.03125 0.2500 0.81

8 16x16 0.03125 0.0625 0.46 16x16 0.03125 0.3750 0.81

Front Cavity Rear Cavity

 

 

 

 

Figure 3.2.  Measured and Predicted Non-Grazing Flow Resistance of Configurations # 1-8:  
SPL = 140 dB 
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Concluding Remarks 

Although not obvious from a casual inspection of (3.20), the impedance of the lower cavity plays 
a major role in controlling the resonator overall impedance.  The model is attractive because the 
effects of grazing flow are accounted for in the continuity equation (3.1) as a mass addition.  It 
does not explicitly affect the momentum equation (3.2) because it does not directly affect the 
transfer of vertical momentum flux in the control volume.   
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4.  SLIT RESONATOR IMPEDANCE MODEL 

An axial (1-dof ) control volume model was developed to predict the impedance of Helmholtz 
resonators constructed with high aspect ratio rectangular slit orifices exposed to intense sound.  
The model addresses only the effects of resonator geometry, incident sound pressure amplitude 
and frequency.  It does not include the effects of grazing flow. 

The derivation of the slit resonator impedance model is quite similar to that derived in Section 3 
for the 2-dof circular orifice coupled resonator model with the circular orifices replaced with a slit 
orifice.  For this reason, a detailed derivation is not presented.   

NASA Impedance Data 

Figures 4.1-4.6 below summarize NASA’s impedance measurements and slit goemetries for 
configurations S01-S32.  Figure 4.7a displays the impedances of the above configurations at 
SPL = 120 dB.  The impedance data, displayed in Figure 4.7a, exhibits the well-known 
sensitivity of resistance to SPL in contrast to the insensitivity of reactance.  Note that the very 
high max/min peaks are generated at the liner anti-resonances.  At roughly 1,000 Hz, the 
reactance curve reaches a local maximum followed immediately by a local minimun, then 
reaches a maximum slightly below 1,100 Hz.  The corresponding resistance data displays a 
minimum, followed almost immediately by a maximum, then somewhat later (in frequency 
space) followed by a maximum.  The shapes of the resistance and reactance data of all the 
configurations are remarkably similar even though the slit geometries range from two-
dimensional (S01) to three-dimensional (S06).  This is clearly shown in Figure 4.b, which 
compares the impedances of configurations S01 and S32.  As shown clearly in all the figures, 
there is a clear and unambiguous correlation between the local minimums and maximums of the 
reactances and resistances.   

An examination of Figures 4.1-4.7 suggest the following. 

• The magnitude of the local minimums and maximums of the resistance data shown in 
Figure 4.1b increase with increasing SPL suggesting that non-linearity may be the 
principal mechanism generating this behavior.  This may not eliminate the importance of 
viscosity, but it does suggest that its principal role may only be to reduce the magnitude 
of the acoustic velocity near the side walls housing the slits.  Assuming that only 
harmonic sound is generated, it is well known that acoustic non-linearity generates both 
double frequency components (positive or additive interaction) as well as steady-state or 
acoustic streaming (negative or cancellation interaction).  It is also well known that 
separation bubbles form during the inflow/outflow half-cycles as the acoustic volume flow 
turns into/out-of the slit.  it is proposed that the bubble size is perturbed or modulated 
during the acoustic inflow/out-of slit acoustic volume flow to be perturbed.  This, in turn, 
modulates the slit resistance and reactance.  The data suggests that the amplitude of 
the separation bubble modulation increases as the amplitude of the incident acoustic 
pressure increases.   

• The same behavior described above takes place for all slit geometries tested – ranging 
from 2-dof to 3-dof - suggesting that slit geometry plays only a very minor role, if any, in 
explaining the existence of the maximums and minimums.  This was supported in 
Section 3 above which showed the existence of local maximums in the reactance data of 
2-dof resonators constructed with multiple circular orifices in grazing flow. 
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Figure 4.1a.  Geometry of Sample 1 

 

Figure 4.1b.  Non-Dimensional Resistance and Reactance Data: Configuration S01 
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Figure 4.2

Figure 4.2b.  Non-Dimensional Resistance and Reactance Data: Configuration S02
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Figure 4.2a.  Geometry of Sample 2 

Dimensional Resistance and Reactance Data: Configuration S02

Resistance

Frequency - Hz

2000 2500 3000

Reactance

Frequency - Hz

500 1000 1500 2000

X
/ ρρ ρρ
c

-6

-4

-2

0

2

4

6

8

10

12

14

16

120 dB 

130 dB 

140 dB 

150 dB 

120 dB 

130 dB 

140 dB 

150 dB 

 

 

Dimensional Resistance and Reactance Data: Configuration S02 

Frequency - Hz

2500 3000



34 

 

 

Figure 4.3a.  Geometry of Sample 4 

 

 

Figure 4.3b.  Non-Dimensional Resistance and Reactance Data: Configuration S04 
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Figure 4.4a.  Geometry of Sample 8 

 

Figure 4.4b.  Non-Dimensional Resistance and Reactance Data: Configuration S08 
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Figure 4.5

Figure 4.5b.  Non-Dimensional Resistance and Reactance Data: Configuration S16
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Figure 4.5a.  Geometry of Sample 16 

 
Dimensional Resistance and Reactance Data: Configuration S16
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Figure 

Figure 4.6b.  Non-Dimensional Resistance and Reactance Data: Configuration S32
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Figure 4.6a.  Geometry of Sample 32 

 

 
Dimensional Resistance and Reactance Data: Configuration S32
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Figure 4.7a.  Summary of Non-Dimensional Resistance and Reactance Data: Configurations:  
All Configurations, S01-S32, SPL = 120 dB 

 
Figure 4.7b.  Summary of Non-Dimensional Resistance and Reactance Data: Configurations:  

S01 and S32, SPL = 120 dB 
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Model Validation. 

Figures 4.8a and 4.8b display measured and predicted resonator resistance and reactance of 
slit resonator S01L120.  Figure 4.8c displays the slit model acoustic discharge coefficient, Cd, 
required to match the model to the measurements.  Observe the rather small values of Cd 
required to achieve reasonable agreement between model prediction and measurements 
at/near resonance frequencies.  Borrowing from the steady-state definition of the discharge 
coefficient Cd is defined as the ratio of the actual acoustic volume flow pumped into and out-of 
the slit resonator cavity during each half-cycle to the ideal inviscid acoustic volume flow.  As 
showed in Figure 4.9, Johanson measured very low values of steady-state discharge coefficient 
of sharp-edged circular orifices at very low Reynolds numbers6.  Unfortunately, the acoustic 
Reynolds numbers, Re, characteristic of the resonator geometry, and fluid properties shown 

below are way too high, Re = 1,350 (Ws = 0.124 cm, f = 2000 Hz, ν = 0.15 cm2/sec), to support 
the very low values of Cd. required in Figure 4.8c.  This prompted the derivation of the radial 
control volume impedance model of the slit resonator described below. 

 

 

Figure 4.8a.  1-DOF Impedance Model Predicted vs. Measured Resistance:  SPL = 120 dB, 
Configuration S01L120; K = 1.1, H/Ws = 3.20 
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Figure 4.8b.  1-DOF Impedance Model Predicted vs. Measured Reactance:  SPL = 120 dB, 
Configuration S01L120; K = 1.1, H/Ws = 3.20 

 

Figure 4.8c.  1-DOF Impedance Model Predicted Discharge Coefficient:  SPL = 120 dB, 
Configuration S01L120; K = 1.1, H/Ws = 3.20 
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Figure 4.9.  Steady-State Discharge Coefficient of Sharp

 

Derivation of a Non-Grazing Flow 

The derivation of the 2-dof slit resonator 
unsteady mass and vertical momentum across the control volume sketched in F
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During the inflow half-cycle, the acoustic volume flow entering

outer control surface is denoted by 
through the inner control volume 
boundary-layer component, denoted by 

The impedance model is derived for the half
pumped into the resonator cavity 
velocity is ejected from the resonator cavity.  The restriction of the model to the in
is not unduly limiting because th
volume must be constant over a dynamically steady
solution over the in-flow half-cycle should result in an approximate so
The derivation of the model assumes that all resonator dimensions are small compared to the 
wavelength of the incident sound field to distinguish Helmholtz resonators from quarter
tube resonators. 
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State Discharge Coefficient of Sharp-Edged Circular Orifices

Flow Radial (2-DOF) Control Volume Slit Liner Model. 

dof slit resonator impedance model is based on applying conservation of 
unsteady mass and vertical momentum across the control volume sketched in F

denote the outer and inner surfaces of the control volume respectively.  
cycle, the acoustic volume flow entering the control volume

control surface is denoted by u(H)πΗ and the acoustic volume flow entering the cavity 
control volume consists of an inviscid component, denoted by 

layer component, denoted by uBLWBL. 

The impedance model is derived for the half-cycle when the incident acoustic velocity is 
pumped into the resonator cavity - it is not valid during the other half-cycle when the acoustic 
velocity is ejected from the resonator cavity.  The restriction of the model to the in
is not unduly limiting because the particle volume flow pumped into and out-
volume must be constant over a dynamically steady-state sound period.  Thus an approximate 

cycle should result in an approximate solution over the entire cycle.  
derivation of the model assumes that all resonator dimensions are small compared to the 

wavelength of the incident sound field to distinguish Helmholtz resonators from quarter

 

Edged Circular Orifices6 

Slit Liner Model.  

impedance model is based on applying conservation of 
unsteady mass and vertical momentum across the control volume sketched in Figure 4.10.  The 

surfaces of the control volume respectively.  
the control volume through the 

entering the cavity 
denoted by uinvWinv, and a 

t acoustic velocity is 
cycle when the acoustic 

velocity is ejected from the resonator cavity.  The restriction of the model to the in-flow half-cycle 
-of the resonator 

state sound period.  Thus an approximate 
lution over the entire cycle.  

derivation of the model assumes that all resonator dimensions are small compared to the 
wavelength of the incident sound field to distinguish Helmholtz resonators from quarter-wave 
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Figure 4.10.  Control Volume used in 2-dof Slit Resonator Impedance Model Derivation 

 

 

Conservation of Mass.  Assuming H << λ, Tempkin has shown that to lowest order, 
compressibility effects are small with respect to mass flow convection1.  This approximation 
permits the conservation of mass flux into and out-or the control volume to be written, where the 
acoustic velocities are understood to be functions of time, 

H cav o inv inv BL BLu H u r u W u Wπ π= = +     (4.1) 

Thus the pumping of fluid into and out-of the slit orifice takes place in an unsteady, 
incompressible manner.  Equation (4.1) shows that to first-order, the pumping of volume flow 
into and out-of a resonator orifice is governed by unsteady, incompressible motion.  This makes 
sense because acoustic changes can occur only over scale lengths on the order of an acoustic 
wavelength.   

Equation (4.1) contains the four unknown parameters uinv, Winv, uBL and WBL, which are very 
difficult to measure.  The number of parameters will be reduced by adapting the discharge 
coefficient concept used to predict one-dimensional steady-state volume flow in ducts3,4.  The 
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instantaneous inviscid volume flow, uinvWinv, and boundary layer volume flow, uBLWBL, are 
combined into a single volume flow, denoted as ucdWcd in Figure 4.10.  With this understanding, 
(1) is written 

cav cav
H cav o cd cd cd

Dcd

o

u u
u H u r u W u

CW

r

π π

π

= = → = =
 
 
 

   (4.2) 

Here ucd Wcd represents the instantaneous acoustic volume flow entering the cavity through a 
vena contracta area denoted as Wcd in Figure 1.  Equation (4.2) introduces an acoustic 
discharge coefficient, Cd.  Using experimental data to determine Cd is equivalent to determining 
the average volume flow rate entering/exiting the resonator cavity during each half-cycle2,3.   

Conservation of Radial Momentum.  Referring to Figure 4.10, the conservation of momentum in 
the radial direction may be written,  

( ) ( )
2 2

2 2 2
2

o cav
o o H cd d o H cav w o

H r du
u H u C r P H P r H r

dt
ρ π ρ π π π π τ

 −
= − + − − − 

 
 (4.3) 

Using (4.2) to replace uH by ucav  and ucd by ucav/Cd yields, after some modest algebra, 

( )
2 2

21
2

2
o cav o

o o o cav H cav w o

d

H r du r
r u P H P r H r

dt H C
ρ π ρ π π π τ

  −
= − + − − −  

   
 (4.4) 

The various terms in (4.4) are described below. 

• The term on the left-hand-side (LHS) represents the time rate of increase of momentum 
within the control volume.  As shown schematically in Figure 4.10, H is a radial length 
parameter that is unknown and must be determined experimentally.   

• The first term on the right-hand-side (RHS) represents the net radial momentum flux 
entering the control volume through its outer radial control surface.   

• The sum of the second and third terms on the RHS represent the net radial acoustic 
driving force acting on the control volume.  Here PH represents the acoustic pressure 
driving the sound particle volume flow into the resonator cavity during the inflow half-
cycle and Pcav represents the cavity restoring pressure.   

• The fourth term on the RHS represents the momentum loss from frictional wall shear 

stresses τw distributed over the side wall housing the slit orifice. 

Model Simplifications.  The non-linearity of (4.4) prevents an analytic solution.  It must be 
solved numerically to achieve a dynamically steady-state solution, followed by a Fourier 
transform to calculate the fundamental harmonic velocity component.  Although this procedure 
is numerically straightforward, it greatly complicates the design of sound absorbing liners.  Since 
our goal is to derive a reasonably accurate, but simple, impedance model, the following three 
simplifications are introduced to derive an approximate analytic solution.   

Non-Linearity.  The first simplification is based upon the hot-wire experiments of Ingard and 
Ising2.  They showed, at high SPLs, the formation of alternating non-linear jetting into and out-of 
an orifice during each half-cycle.  They also showed that the amplitudes of the higher harmonic 
velocity components were small relative to the fundamental.  Physically, this permits the 
derivation of a model that ignores lower/higher harmonic energy and allows for harmonic 
oscillation of non-linear jetting into and out-of the orifice.  With this understanding, the non-linear 
term ucav

2 in (4.4) may be simplified to 
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( )2 2 ei t

cav cav cav cavu u u t u ω≅ ≅      (4.5) 

Substituting (4.5) into (4.4) yields, 

( )
2 2

21
2

2
o o

o cav o o cav H cav w o

d

H r r
i u r u P H P r H r

H C
ωρ π ρ π π π τ

  −
= − + − − −  

   
  (4.6) 

Here ducav/dt was replaced with the expression, i?@ωucav.  The simplification achieved by ignoring 
higher harmonic energy permits the solution of (4.6) in the frequency domain rather than the 
time domain required in the solution of (4.4).  

Cavity Pressure.  The second simplification assumes that the cavity pressure can be accurately 
modeled by solving the one-dimensional wave equation in the cavity resulting in the following 
expression, 

( )cotcav o o c cavP i c kL uρ σ= −      (4.7) 

Viscous Scrubbing Losses.  The third simplification addresses the wall shear stress τw and 
assumes that it is generated by acoustically generated viscous scrubbing losses.  A simple 
model based upon dimensional analysis is proposed.  Acoustic shear stresses are derived 
assuming "Stokes-like" axially uniform diffusion of vorticity over the face-plate wall that is 

modeled as proportional to /cavuµ ω ν .  With these assumptions, the wall shear stress τw is 

written, 

w vis o cav

o

K u
ω

τ µ
ν

≅      (4.8) 

The parameter Kvis will be determined from NASA furnished impedance data. 

Substituting (4.5), (4.7) and (4.8) into (4.6), dividing by πro, and rearranging yields,  
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  (4.9) 

The solution to (4.9) is 
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With ucav specified by (4.10), the slit resonator impedance is determined from the following 
expression, 
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 (4.11) 

The resonator resistance and reactance follow from (4.11) as shown below, 

( ); ( )R real Z X imag Z= =      (4.12) 

Model Validation 

The predicted impedance was compared to data furnished by NASA LaRC.  The model 
parameter Kvis defined in (4.8) is used to force agreement between predicted and measured 
resistance.  The parameters Kvis, Cd and H are coupled.  They are used to force agreement 
between predicted and measured reactance.  The interpretation of H is of interest.  Figure 4.10 
suggests that it is connected to the distance from the slit where the acoustic pressure is outside 
the near field of the slit.  In this sense, H may represent an initial step towards understanding 
how to effectively use the Dean Two-Microphone Impedance measurement method. 

In order to achieve reasonable agreement between prediction and data, the model was modified 
by decoupling the resistance and reactance.  This was necessary because the high values of 
reactance were preventing any kind of reasonable agreement using (4.11) to predict resistance.  
Thus, (4.11) was modified as shown below, 
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   (4.13) 

Figures 4.11a and 4.11b summarize the predicted vs. measured resistance and reactance of 
Configuration SO1 at SPL = 120 dB.  As discussed above, the model parameters Kac and H 
were selected to force agreement with data.  As shown, reasonable agreement between 
prediction and data was achieved.  The values of the discharge coefficient required to achieve 
even the modest agreement shown in Figures 4.11a and 4.11b are displayed in Figure 4.11c.  
They are disturbingly small.  A possible explanation for this is suggested by the close 
agreement in impedance, displayed in Figure 4.12, for configurations S01L and S32L at SPL = 
120 dB.  This suggests that the acoustic behavior of the slit resonator cannot be modeled using 
a one-dimensional impedance model. 
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Figure 4.11.  Predicted vs. Measured Slit S01L Resonator Resistance: SPL = 120/150 dB, 
Kac(120) = K(150) = 0.30, H(120) /WS= 5.75, H(150) /WS= 5.28 

 

Figure 4.12.  Predicted vs. Measured Slit S01L Resonator Reactance: SPL = 120/150 dB 
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Figure 4.13.  Slit Resonator Discharge Coefficient Required to Match Predicted S01L 
Resistance to Data: SPL = 120/150 dB 

 
Figure 4.14.  Impedance of Configurations S01L120 and S32L120 
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5.  GRAZING FLOW IMPEDANCE MODEL of MULTI-CIRCULAR ORIFICES HELMHOLTZ 
RESONATORS 

An axial (1-dof) control volume model was developed to predict the impedance of Helmholtz 
resonators constructed with multi-circular orifices exposed to intense sound and uniform grazing 
flow.  Since the derivation of impedance model is quite similar to that derived in Sections 3 and 
4, a detailed derivation is not presented.   

Model Validation.   

Figures 5.1 and 5.2 compare model predicted impedance with measurement for SPLs of 120 dB 
and 140 dB and grazing flow Mach numbers of 0 and 0.3 respectively.  Observe that the second 
peak resistance displayed in the grazing flow data occurs at frequencies near resonance as 
shown in the flattening out of the reactance data above roughly 2000 Hz.   

Although it is clear that a correlation exists between the resistance peaks and the local 
“flattening” out of the reactance, we do not understand the physical mechanism(s) causing this 
behavior. 

The model empirical parameters need to be calibrated by a large database of impedance data. 
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Figure 5.1.  Measured/Predicted Effect of Mach No. on Impedance of Configuration GEATOL1, 

SPL = 120 dB, dori = 0.038-in, σ = 0.038, Lcav = 1.5-in, Hexagonal Cavity with 3/8-in 
face-to-face spacing 
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Figure 5.2.  Measured/Predicted Effect of Mach No. on Impedance of Configuration GEATOL1, 

SPL = 140 dB, dori = 0.038-in, σ = 0.038, Lcav = 1.5-in, Hexagonal Cavity with 3/8-in 
face-to-face spacing 
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5.  SUMMARY AND CONCLUSIONS 

Numerical Findings 

C. Summary and conclusions 

 

In Phase I, computationally, we have made two significant advances in the application of 
computational aeroacoustics methodology to acoustic liner technology. We believe we are the 
first to investigate the effect of high temperature on liner performance by direct numerical 
simulation. High temperature liners are potential suppressor of turbine and combustion noise 
from jet engines. For resonators with the same depth mode resonance frequency, our finding 
indicates that temperature effects for discrete sound are not the same as for broadband noise. 
For discrete sound, the normalized resistance appears to be insensitive to temperature except 
at high SPL. However, reactance is lower, significantly lower in absolute value, at high 
temperature. Also, at high temperature, a liner generally has a larger absorption coefficient. For 
broadband sound, both the normalized resistance and reactance are not much affected by a 
large temperature increase for low frequencies. There are, however, noticeable differences in 
liner reactance at high frequencies.  Absorption coefficient is nearly independent of temperature 
at low frequencies. But at higher frequencies, the absorption coefficient is higher at higher 
temperature. 

Another technical advance we have made in Phase I work is to investigate computationally the 
acoustic performance of a liner. This, as far as we know, has not been done before. Previous 
works concentrate on a single resonator. A liner is an array of resonators. In an array of 
resonators, the resonators may interact acoustically. This interaction cannot be determined by 
studying a single resonator. Our preliminary work reveals that liner impedance is affected by the 
non-uniformity of the incident sound waves. That is, pressure gradient is important. This 
observation is new. It suggests mutual resonator interaction in the presence of a sound 
pressure gradient. The significance of this phenomenon is not fully understood. Further work is 
required to quantify the observed effect. 

In regard to computer run time, for all single slit resonator computations reported above, the run 
time for discrete frequency incident sound using 4 cores on a 64-cores Microway computer 
cluster (AMD Opteron, 2GHz) is 11 hours. For computations involving 10 slit resonators, 40 
cores are used with 4 cores per resonator. The run time is again about 11 hours. For 3 
dimensional normal incidence impedance tube computations using 26 cores, the run time is 
about 4 days. It should be emphasized that because of the limited time available in Phase I, our 
computer codes have not been optimized. In addition, the code design is conservative; placing 
emphasis solely on computational accuracy. For instance, the codes are designed to be 
capable of computing accurately for frequencies up to 6 kHz. If the design criterion is reduced to 
3 kHz, a significant reduction in the number of meshes becomes possible. As a result, we 
estimate that for 3D computation, there could be a factor of 3 reduction in computer run time. 

Impedance Modeling Findings 

The 1-dof and 1-dof resonator impedance model demonstrate the potential to predict fairly 
accurately resonator impedance as a function of SPL and grazing flow.  It did so over only for a 
small database of resonator data.   In order to extend the practical usefulness of these models, 
the empirical parameters used to predict impedance should be calibrated with a meaningful 
number of resonator impedance data. 
 

The two-dimensional radial control volume impedance model offers the potential to empirically 
determine incident sound pressure face-plate distance from resonator orifices.  This represents 
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an important initial step in improving our understanding of how to effectively use the Dean Two-
Microphone impedance measurement method.   
 

The local minimums/maximums of the slit/circular orifice impedance data may be generated by 
non-linear generated modulation of the orifice inflow/out-flow separation eddies.  Modulation of 
the inflow/out-flow into the resonator cavity modulates the resonator resistance and reactance.   
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